Утверждено Директор ГБОУ СОШ № 653 _____________________ Е. Н. Шубина «_____» ___________________ 2012 г.
|
Согласовано Зам. Директора по УВР _____________________ Е. В. Ткачева «_______» _________________ 2012 г. |
Рассмотрено на заседании МО Протокол № 1 От «_______» _______________ 2012 г. |
Календарно – тематический план рабочей программы на 2012 – 2013 учебный год
Класс: 3 А
Учитель: Евдокимова Галина Александровна
Предмет: Математика
Часов в неделю: 4
УМК «Школа 2100»
Пояснительная записка.
Для разработки данной учебной программы были использованы следующие материалы:
4. Программа по математике для четырехлетней начальной школы под редакцией Т. Е. Демидова, С. А. Козлова, А. П. Тонких.
5. Демидова, С. А. Козлова, А. П. Тонких. Моя математика, 1кл.-4кл.
6. Демидова, С. А. Козлова, А. П. Тонких. Математика Методические рекомендации для учителя.
В основе построения данного курса лежит идея гуманизации математического образования, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям. В основе отбора методов и средств обучения лежит деятельностный подход.
Курс позволяет обеспечить требуемый уровень подготовки школьников, предусматриваемый государственным стандартом математического образования, а также позволяет осуществлять при этом такую их подготовку, которая является достаточной для углубленного изучения математики.
Цели обучения математике обусловлены общими целями образования, концепцией математического образования, статусом и ролью математики в науке, культуре и жизнедеятельности общества, ценностями математического образования, новыми образовательными идеями, среди которых важное место занимает развивающее обучение.
Основная цель обучения математике состоит в формировании всесторонне образованной и инициативной личности, владеющей системой математических знаний и умений, идейно-нравственных, культурных и этических принципов, норм поведения, которые складываются в ходе учебно-воспитательного процесса и готовят ученика к активной деятельности и непрерывному образованию в современном обществе.
Исходя из общих положений концепции математического образования, начальный курс математики призван решать следующие задачи:
обеспечить прочное и сознательное овладение системой математических знаний и умений, необходимых для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образования;
обеспечить интеллектуальное развитие, сформировать качества мышления, характерные для математической деятельности и необходимые для полноценной ЖИЗНИ В обществе;
сформировать умение учиться;
сформировать представление об идеях и методах математики, о математике как форме описания и методе познания окружающего мира;
сформировать представление о математике как части общечеловеческой культуры, понимание значимости математики для общественного прогресса;
сформировать устойчивый интерес к математике;
выявить и развить математические и творческие способности.
Содержание программы
1. Числа и операции над ними. Понятие натурального числа является одним из центральных понятий начального курса математики.
Формирование этого понятия осуществляется практически в течение всех лет обучения. Раскрывается это понятие на конкретной основе Б результате практического оперирования конечными предметными множествами; в процессе счета предметов, в процессе измерения величин. В результате раскрываются три подхода к построению
математической модели понятия «число»: количественное число, порядковое число, число как мера величины.
В тесной связи с понятием числа формируется понятие о десятичной системе счисления. Раскрывается оно постепенно, в ходе изучения нумерации и арифметических операций над натуральными числами. При изучении нумерации деятельность учащихся направляется на осознание позиционного принципа десятичной системы счисления и на соотношение разрядных единиц.
Важное место в начальном курсе математики занимает понятие арифметической операции. Смысл каждой арифметической операции раскрывается на конкретной основе в процессе выполнения операций над группами предметов, вводится соответствующая символика и терминология. При изучении каждой операции рассматривается возможность ее обращения.
Важное значение при изучении операций над числами имеет усвоение табличных случаев сложения и умножения. Чтобы обеспечить прочное овладение ими, необходимо, во-первых, своевременно создать у детей установку на запоминание, во-вторых, практически на каждом уроке организовать работу тренировочного характера. Задания, предлагаемые детям, должны отличаться разнообразием и включать в работу всех детей класса. Необходимо использовать приемы, формы работы, способствующие поддержанию интереса детей, а также различные средства обратной связи.
В предлагаемом курсе изучаются некоторые основные законы математики и их практические приложения:
коммутативный закон сложения и умножения;
ассоциативный закон сложения и умножения;
дистрибутивный закон умножения относительно сложения.
Все эти законы изучаются в связи с арифметическими операциями, рассматриваются на конкретном материале и направлены, главным образом, на формирование вычислительных навыков учащихся, на умение применять рациональные приемы вычислений.
Следует отметить, что наиболее важное значение в курсе математики начальных классов имеют не только сами законы, но и их практические приложения. Главное - научить детей применять эти законы при выполнении устных и письменных вычислений, в ходе решения задач, выполнении измерений. Для усвоения устных вычислительных приемов используются различные предметные и знаковые модели.
В соответствии с требованиями стандарта, при изучении математики в начальных классах у детей необходимо сформировать прочные осознанные вычислительные навыки, в некоторых случаях они должны быть доведены до автоматизма.
Значение вычислительных навыков состоит не только в том, что без них учащиеся не в состоянии овладеть содержанием всех последующих разделов школьного курса математики. Без них они не в состоянии овладеть содержанием и таких учебных дисциплин, как, например, физика и химия, в которых систематически используются различные вычисления. Наряду с устными приемами вычислений в программе большое зна-чение уделяется обучению детей письменным приемам вычислений. При ознакомлении с письменными приемами важное значение придается алгоритмизации.
В программу курса введены понятия «целое» и «часть». Учащиеся усваивают разбиение на части множеств и величин, взаимосвязь между целым и частью. Это позволяет им осознать взаимосвязь между операциями сложения и вычитания, между компонентами и результатом действия, что, в свою очередь, станет основой формирования вычисли-тельных навыков, обучения решению текстовых задач и уравнений.
Современный уровень развития науки и техники требует включения в обучение школьников знакомство с моделями и основами моделирования, а также формирования у них навыков алгоритмического мышления. Без применения моделей и моделирования невозможно эффективное изучение исследуемых объектов в различных сферах человеческой деятельности, а правильное и четкое выполнение определенной последовательности действий требует от специалистов многих профессий владения навыками алгоритмического мышления. Разработка и использование станков-автоматов, компьютеров, экспертных систем, долгосрочных прогнозов - вот неполный перечень применения знаний основ моделирования и алгоритмизации. Поэтому формирование у младших школьников алгоритмического мышления, умений построения простейших алгоритмов и моделей — одна из важнейших задач современной общеобразовательной школы.
Обучение школьников умению «видеть» алгоритмы и осознавать алгоритмическую сущность тех действий, которые они выполняют, начинается с простейших алгоритмов, доступных и понятных им (алгоритмы пользования бытовыми приборами, приготовления различных блюд, переход улицы и т.п.). В начальном курсе математики алгоритмы представлены в виде правил, последовательности действий и т.п. Например, при изучении арифметических операций над многозначными числами учащиеся пользуются правилами сложения, умножения, вычитания и деления многозначных чисел, при изучении дробей - правилами сравнения дробей и т.д. Программа позволяет обеспечить на всех этапах обучения высокую алгоритмическую подготовку учащихся.
2. Величины и их измерение. Величина также является одним из основных понятий начального курса математики. В процессе изучения математики у детей необходимо сформировать представление о каждой из изучаемых величин (длина, масса, время, площадь, объем и др.) как о некотором свойстве предметов и явлений окружающей нас жизни, а также умение выполнять измерение величин.
Формирование представления о каждой из включенных в программу величин и способах ее измерения имеет свои особенности. Однако можно выделить общие положения, общие этапы, которые имеют место при изучении каждой из величин в начальных классах:
выясняются и уточняются представления детей о данной величине (жизненный опыт ребенка);
проводится сравнение однородных величин (визуально, с по мощью ощущений, непосредственным сравнением с использованием различных условных мерок и без них);
проводится знакомство с единицей измерения данной величины и с измерительным прибором;
формируются измерительные умения и навыки;
выполняется сложение и вычитание значений однородных величин. выраженных в единицах одного наименования (в ходе решения задач);
проводится знакомство с новыми единицами измерения величин:
выполняется сложение и вычитание значений величины, выраженных в единицах двух наименований;
выполняется умножение и деление величины на отвлеченное числа при изучении величин имеются особенности и в организации деятельности учащихся.
Важное место занимают средства наглядности как демонстрационные, так и индивидуальные, сочетание различных форм обучения на уроке (коллективных, групповых и индивидуальных).
Немаловажное значение имеют удачно выбранные методы обучения, среди которых группа практических методов и практических работ занимает особое место. Широкие возможности создаются здесь и для использования проблемных ситуаций.
В ходе формирования у учащихся представления о величинах создаются возможности для пропедевтики понятия функциональной зависимости. Основной упор при формировании представления о функциональной зависимости делается на раскрытие закономерностей того, как изменение одной величины влияет на изменение другой, связанной с ней величины. Эта взаимосвязь может быть представлена в различных видах: рисунком, графиком, схемой, таблицей, диаграммой, формулой, правилом.
3. Текстовые задачи. В начальном курсе математики особое место отводится простым (опорным) задачам. Умение решать такие задачи — фундамент, на котором строится работа с более сложными задачами.
В ходе решения опорных задач учащиеся усваивают смысл арифметических действий, связь между компонентами и результатами действий, зависимость между величинами и другие вопросы.
Работа с текстовыми задачами является очень важным и вместе с тем весьма трудным для детей разделом математического образования. Процесс решения задачи является многоэтапным: он включает в себя перевод словесного текста на язык математики (построение математической модели), математическое решение, а затем анализ полученных результатов. Работе с текстовыми задачами следует уделить достаточно много времени, обращая внимание детей на поиск и сравнение различных спо-собов решения задачи, построение математических моделей, грамотность изложения собственных рассуждений при решении задач.
Учащихся следует знакомить с различными методами решения текстовых задач: арифметическим, алгебраическим, геометрическим, логическим и практическим; с различными видами математических моделей, лежащих в основе каждого метода; а также с различными способами решения в рамках выбранного метода.
Решение текстовых задач дает богатый материал для развития и воспитания учащихся.
Краткие записи условий текстовых задач - примеры моделей, используемых в начальном курсе математики. Метод математического моделирования позволяет научить школьников:
анализу (на этапе восприятия задачи и выбора пути реализации решения);
установлению взаимосвязей между объектами задачи, построению наиболее целе-сообразной схемы решения;
интерпретации полученного решения для исходной задачи;
составлению задач по готовым моделям и др.
4. Элементы геометрии, изучение геометрического материала служит двум основным целям: формированию у учащихся пространственных представлений и ознакомлению с геометрическими величинами (длиной, площадью, объемом).
Наряду с этим одной из важных целей работы с геометрическим материалом является использование его в качестве одного из средств наглядности при рассмотрении некоторых арифметических фактов. Кроме этого, предполагается установление связи между арифметикой и геометрией на начальном этапе обучения математике для расширения сферы применения приобретенных детьми арифметических знаний, умений и навыков. Геометрический материал изучается в течение всех лет обучения в начальных классах, начиная с первых уроков.
В изучении геометрического материала просматриваются два направления:
1) формирование представлений о геометрических фигурах;
2) формирование некоторых практических умений, связанных с построением геометрических фигур и измерениями.
Геометрический материал распределен по годам обучения и по урокам так, что при изучении он включается отдельными частями, которые определены программой и соответствующим учебником.
Преимущественно уроки математики следует строить так, чтобы главную часть их составлял арифметический материал, а геометрический материал входил бы составной частью. Это создает большие возможности для осуществления связи геометрических и других знаний, а также позволяет вносить определенное разнообразие в учебную дея-тельность на уроках математики, что очень важно для детей этого возраста, а кроме того, содействует повышению эффективности обучения.
Программа предусматривает формирование у школьников представлений о различных геометрических фигурах и их свойствах: точке, линиях (кривой, прямой, ломаной), отрезке, многоугольниках различных видов и их элементах, окружности, круге и др.
Учитель должен стремиться к усвоению детьми названий изучаемых геометрических фигур и их основных свойств, а также сформировать умение выполнять их построение на клетчатой бумаге.
Отмечая особенности изучения геометрических фигур, следует обратить внимание на то обстоятельство, что свойства всех изучаемых фигур выявляются экспериментальным путем в ходе выполнения соответствующих упражнений.
Важную роль при этом играет выбор методов обучения. Значительное место при изучении геометрических фигур и их свойств должна занимать группа практических методов, и особенно практические работы.
Систематически должны проводиться такие виды работ, как изготовление геометрических фигур из бумаги, палочек, пластилина, их вырезание, моделирование и др. При этом важно учить детей различать существенные и несущественные признаки фигур. Большое внимание при этом следует уделить использованию приема сопоставления и противопоставления геометрических фигур.
Предложенные в учебнике упражнения, в ходе выполнения которых происходит формирование представлений о геометрических фигурах, можно охарактеризовать как задания:
в которых геометрические фигуры используются как объекты для пересчитывания
на классификацию фигур;
на выявление геометрической формы реальных объектов или их частей;
на построение геометрических фигур;
на разбиение фигуры на части и составление ее из других фигур;
на формирование умения читать геометрические чертежи;
вычислительного характера (сумма длин сторон многоугольника и др.)
Знакомству с геометрическими фигурами и их свойствами способствуют и простейшие задачи на построение. В ходе их выполнения необходимо учить детей пользоваться чертежными инструментами, формировать у них чертежные навыки. Здесь надо предъявлять к учащимся требования не меньшие, чем при формировании навыков письма и счета.
5. Элементы алгебры. В курсе математики для начальных классов формируются некоторые понятия, связанные с алгеброй. Это понятия выражения, равенства, неравенства (числового и буквенного уравнения) и формулы. Суть этих понятий раскрывается на конкретной основе, изучение их увязывается с изучением арифметического материала. У учащихся формируются умения правильно пользоваться математической терминологией и символикой.
6. Элементы стохастики. Наша жизнь состоит из явлений стохастического характера. Поэтому современному человеку необходимо иметь представление об основных методах анализа данных и вероятностных закономерностях, играющих важную роль в науке, технике и экономике. В этой связи элементы комбинаторики, теории вероятностей и математической статистики входят в школьный курс математики в виде одной из сквозных содержательно-методических линий, которая дает возможность накопить определенный запас представлений о статистическом характере окружающих явлений и об их свойствах.
В начальной школе стохастика представлена в виде элементов комбинаторики, теории графов, наглядной и описательной статистики, начальных понятий теории вероятностей. С их изучением тесно связано формирование у младших школьников отдельных комбинаторных способностей, вероятностных понятий («чаще», «реже», «невозможно», «возможно» и др.), начал статистической культуры.
Базу для решения вероятностных задач создают комбинаторные задачи. Использование комбинаторных задач позволяет расширить знания детей о задаче, познакомить их с новым способом решения задач; формирует умение принимать решения, оптимальные в данном случае; развивает элементы творческой деятельности.
Комбинаторные задачи, предлагаемые в начальных классах, как правило, носят практическую направленность и основаны на реальном сюжете. Это вызвано в первую очередь психологическими особенностями младших школьников, их слабыми способностями к абстрактному мышлению. В этой связи система упражнений строится таким образом, чтобы обеспечить постепенный переход от манипуляции с предметами к действиям в уме.
Такое содержание учебного материала способствует развитию внутрипредметных и межпредметных связей (в частности, математики и естествознания), позволяет осуществлять прикладную направленность курса, раскрывает роль современной математики в познании окружающей действительности, формирует мировоззрение. Человеку, не понявшему вероятностных идей в раннем детстве, в более позднем возрасте они даются нелегко, так как многое в теории вероятностей кажется противоречащим жизненному опыту, а с возрастом опыт набирается и приобретает статус безусловности. Поэтому очень важно формировать стохастическую культуру, развивать вероятностную интуицию и комбинаторные способности детей в раннем возрасте.
7. Нестандартные и занимательные задачи. В настоящее время одной из тенденций улучшения качества образования становится ориентация на развитие творческого потенциала личности ученика на всех этапах обучения в школе, на развитие его творческого мышления, на умение использовать эвристические методы в процессе открытия нового и поиска выхода из различных нестандартных ситуаций и положений.
Математика - это орудие для размышления, в ее арсенале имеется большое количество задач, которые на протяжении тысячелетий способствовали формированию мышления людей, умению решать нестандартные задачи, с честью выходить из затруднительных положений.
К тому же воспитание интереса младших школьников к математике, развитие их математических способностей невозможно без использования в учебном процессе задач на сообразительность, задач-шуток, математических фокусов, числовых головоломок, арифметических ребусов и лабиринтов, дидактических игр, стихов, задач-сказок, загадок и т.п.
Начиная с первого класса, при решении такого рода задач, как и других, предлагаемых в курсе математики, школьников необходимо учить применять теоретические сведения для обоснования рассуждений в ходе их решения; правильно проводить логические рассуждения; формулировать утверждение, обратное данному; проводить несложные классификации, приводить примеры и контрпримеры.
В основу построения программы положен принцип построения содержания предмета «по спирали». Многие математические понятия и методы не могут быть восприняты учащимися сразу. Необходим долгий и трудный путь к их осознанному пониманию. Процесс формирования математических понятий должен проходить в своем развитии несколько ступеней, стадий, уровней.
Сложность содержания материала, недостаточная подготовленность учащихся к его осмыслению приводят к необходимости растягивания процесса его изучения во времени и отказа от линейного пути его изучения.
Построение содержания предмета «по спирали» позволяет к концу обучения в школе постепенно перейти от наглядного к формально-логическому изложению, от наблюдений и экспериментов - к точным формулировкам и доказательствам.
Материал излагается так, что при дальнейшем изучении происходит, развитие имеющихся знаний учащегося, их перевод на более высокий уровень усвоения, но не происходит отрицания того, что учащийся знает.
Содержание предмета по темам
Числа и операции над ними.
Числа от 1 до 1000.
Сотня. Счѐт сотнями. Тысяча. Трѐхзначные числа. Разряд сотен, десятков, единиц. Разрядные слагаемые. Чтение и запись трѐхзначных чисел. Последовательность чисел. Сравнение чисел.
Дробные числа.
Доли. Сравнение долей, нахождение доли числа. Нахождение числа по доле.
Сложение и вычитание чисел.
Операции сложения и вычитания над числами в пределах 1 000. Устное сложение и вычитание чисел в случаях, сводимых к действиям в пределах 100. Письменные приѐмы сложения и вычитания трѐхзначных чисел.
Умножение и деление чисел в пределах 100.
Операции умножения и деления над числами в пределах 100. Распределительное свойство умножения и деления относительно суммы (умножение и деление суммы на число). Сочетательное свойство умножения. Использование свойств умножения и деления для рационализации вычислений. Внетабличное умножение и деление. Деление с остатком. Проверка деления с остатком. Изменение результатов умножения и деления в зависимости от изменения компонент. Операции умножения и деления над числами в пределах 1000. Устное умножение и деление чисел в случаях, сводимых к действиям в пределах 100; умножение и деление на 100. Письменные приѐмы умножения трѐхзначного числа на однозначное. Запись умножения «в столбик». Письменные приѐмы деления трѐхзначных чисел на однозначное. Запись деления «уголком».
Величины и их измерение.
Объѐм. Единицы объѐма: 1 см³, 1 дм³, 1 м³. Соотношения между единицами измерения объема. Формулы объема прямоугольного параллелепипеда (куба).
Время. Единицы измерения времени: секунда, минута, час, сутки, неделя, месяц, год. Соотношения между единицами измерения времени. Календарь.
Длина. Единицы длины: 1 мм, 1 км. Соотношения между единицами измерения длины.
Масса. Единица измерения массы: центнер. Соотношения между единицами измерения массы.
Скорость, расстояние. Зависимость между величинами: скорость, время, расстояние.
Текстовые задачи.
Решение простых и составных текстовых задач.
Пропедевтика функциональной зависимости при решении задач с пропорциональными величинами. Решение простых задач на движение. Моделирование задач.
Задачи с альтернативным условием.
Элементы геометрии.
Куб, прямоугольный параллелепипед. Их элементы. Отпечатки объѐмных фигур на плоскости.
Виды треугольников: прямоугольный, остроугольный, тупоугольный; равносторонний, равнобедренный, разносторонний.
Изменение положения плоских фигур на плоскости.
Элементы алгебры.
Выражения с двумя переменными. Нахождение значений выражений вида а ± b; а ∙ b; а : b.
Неравенства с одной переменной. Решение подбором неравенств с одной переменной вида: а ± х b.
Решение уравнений вида: х ± а = с ± b; а − х = с ± b; х ± a = с ∙ b; а − х = с : b; х : а = с ± b; а ∙ х = с ± b; а : х = с ∙ b и т.д.
Прямая пропорциональность. Обратная пропорциональность.
Использование уравнений при решении текстовых задач.
Элементы стохастики.
Решение комбинаторных задач с помощью таблиц и графов. Упорядоченный перебор вариантов. Дерево выбора.
Случайные эксперименты. Запись результатов случайного эксперимента. Понятие о частоте события в серии одинаковых случайных экспериментов.
Понятия «чаще», «реже», «невозможно», «возможно», «случайно».
Первоначальное представление о сборе и обработке статистической информации.
Чтение информации, заданной с помощью линейных и столбчатых диаграмм, таблиц, графов. Построение простейших линейных диаграмм по содержащейся в таблице информации.
Круговые диаграммы.
Занимательные и нестандартные задачи.
Уникурсальные кривые.
Логические задачи. Решение логических задач с помощью таблиц и графов.
Множество, элемент множества, подмножество, пересечение множеств, объединение множеств, высказывания с кванторами общности и существования.
Затруднительные положения: задачи на переправы, переливания, взвешивания.
Задачи на принцип Дирихле.
Итоговое повторение.
Основные требования к знаниям и умениям на конец года.
1-й уровень (уровень стандарта)
Учащиеся должны знать:
- названия и последовательность чисел в пределах 1000 (с какого числа начинается натуральный ряд чисел, как образуется каждое следующее число в этом ряду);
- как образуется каждая следующая счетная единица;
- единицы измерения длины (мм, см, дм, м, км,), объема (литр, см3, дм3, м3), массы (кг, центнер), площади (см2, дм2, м2), времени (секунда, минута, час, сутки, неделя, месяц, год, век) и соотношение между единицами измерения каждой из величин;
- формулы площади и периметра прямоугольника (квадрата);
Учащиеся должны уметь:
- пользоваться изученной математической терминологией;
- читать, записывать и сравнивать числа в пределах 1000;
- представлять любое трехзначное число в виде суммы разрядных слагаемых;
- выполнять устно умножение и деление чисел в пределах 100 (в том числе и деление с остатком);
- выполнять умножение и деление сО; 1; 10; 100;
- выполнять устное сложение, вычитание, умножение и деление трехзначных чисел, сводимые к вычислениям в пределах 100, и письменное сложение, вычитание, умножение и деление чисел в остальных случаях;
- выполнять проверку вычислений;
- использовать распределительное свойство умножения и деления относительно суммы (умножение и деление суммы на число), сочетательное свойство умножения для рационализации вычислений;
- читать числовые и буквенные выражения, содержащие не более двух действий с использованием названий компонентов;
- решать задачи в 1-2 действия на все арифметические действия арифметическим способом (с опорой на схемы, таблицы, краткие записи и другие модели);
- находить значения выражений в 2-4 действия;
- вычислять площадь и периметр прямоугольника (квадрата) с помощью соответствующих формул;
- решать уравнения вида а ± х = Ъ, а : х = Ъ, а • х = Ь на основе зависимости между компонентами и результатами действий;
- строить на клетчатой бумаге прямоугольник и квадрат по заданным длинам сторон;
- сравнивать величины по их числовым значениям; выражать данные величины в изученных единицах измерения;
- определять время по часам с точностью до минуты;
- сравнивать и упорядочивать объекты по разным признакам: длине, массе, объему;
- устанавливать зависимость между величинами, характеризующими процессы: движения (пройденный путь, время, скорость), купли- продажи (количество товара, его цена и стоимость).
2-й уровень (уровень программы)
Учащиеся должны знать:
- формулу объема прямоугольного параллелепипеда (куба);
- формулу пути;
- количество, названия и последовательность дней недели, месяцев в году.
Учащиеся должны уметь:
- находить долю от числа, число по доле;
- решать задачи в 2—3 действия на все арифметические действия арифметическим способом (с опорой на схемы, таблицы, краткие записи и другие модели);
- находить значения выражений вида а ±Ъ; а Ь; а : Ь при заданных значениях переменных;
- решать способом подбора неравенства с одной переменной вида: а±хЪ.
- решать уравнения вида х ± а— с ± Ъ; а - х = с ± Ъ; х ± а = с • Ъ; а - х = с : Ь; х : а = с ± Ь на основе взаимосвязей между компонентами и результатами действий;
- использовать заданные уравнения при решении текстовых задач;
- вычислять объем параллелепипеда (куба);
- вычислять площадь и периметр составленных из прямоугольников фигур;
- выделять из множества треугольников прямоугольный и тупоугольный, равнобедренный и равносторонний треугольники;
- строить окружность по заданному радиусу или диаметру;
- выделять из множества геометрических фигур плоские и объемные фигуры;
- узнавать и называть объемные фигуры: параллелепипед, шар, конус, пирамиду, цилиндр;
- выделять из множества параллелепипедов куб;
- решать арифметические ребусы и числовые головоломки, содержащие четыре арифметических действия (сложение, вычитание, умножение, деление);
- устанавливать принадлежность или непринадлежность множеству данных элементов;
- различать истинные и ложные высказывания с кванторами общности и существования;
- читать информацию, заданную с помощью столбчатых, линейных диаграмм, таблиц, графов;
- строить несложные линейные и столбчатые диаграммы по заданным в таблице значениям;
- решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трех элементов, правило произведения, установление числа пар на множестве из 3-5 элементов;
- решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трех высказываний;
- правильно употреблять термины «чаще», «реже», «случайно», «возможно», «невозможно»
- составлять алгоритмы решения простейших задач на переливания;
- составлять алгоритм поиска одной фальшивой монеты на чашечных весах без гирь (при количестве монет не более девяти);
- устанавливать, является ли данная кривая уникурсальной, и обводить ее.