Образовательный портал

Электронный журнал Экстернат.РФ, cоциальная сеть для учителей, путеводитель по образовательным учреждениям, новости образования

  • Increase font size
  • Default font size
  • Decrease font size
Звезда не активнаЗвезда не активнаЗвезда не активнаЗвезда не активнаЗвезда не активна
 

Конические сечения и легенда об Архимеде

Дик Ирина Николаевна

Парабола – одно из конических сечений. Эту кривую можно определить как фигуру, состоящую из всех точек М плоскости, расстояние которых до заданной точки F, называемой фокусом параболы, равно расстоянию до заданной прямой L , называемой директрисой параболы.

Античные геометры изучали самые разные плоские кривые. Особого их внимания удостоились конические сечения: эллипс, парабола и гипербола. Всё это — линии пересечения прямого кругового конуса плоскостями, не проходящими через его вершину и наклонёнными под разными углами к образующей.
Инструмент да Винчи

Ответы на вопросы, занимавшие Никколо Тарталью, почти на полвека раньше него дал Леонардо да Винчи. Он изучал различные траектории и виды сложного движения в природе и технике. В записных книжках художника и учёного есть немало набросков, сделанных на основе наблюдений. Полёт птиц, водоворот, распространение света и звука, круги на воде, движение мяча и снаряда… Во всех случаях его особо интересовала геометрия траекторий: углы падения и отражения, кривые и прочие линии, а также зависимость их формы от различных параметров. Неудивительно, что да Винчи предвосхитил результаты Тартальи.

Леонардо да Винчи часто доводилось делать построения и измерения, для которых требовались специальные инструменты. Вот как описывает мастера за работой Дмитрий Мережковский в романе «Воскресшие боги»: «…Стоя на коленях, рядом с Венерой, вынул он циркуль, угломер, полукруглую медную дугу, наподобие тех, какие употреблялись в математических приборах, и, с выражением того же упорного, спокойного и проникновенного любопытства в холодных, светло-голубых глазах и тонких, плотно сжатых губах, начал мерить различные части прекрасного тела…»

В рукописях Леонардо да Винчи содержатся упоминания о самых разных чертёжных инструментах. Считается, что некоторые из них сконструировал он сам. Одно из его изобретений — устройство для рисования параболы. (Подобный инструмент, известный ещё грекам, описал арабский математик X—XI веков ас-Сиджизи.) Это был совершенный циркуль — с его помощью чертили все виды конических сечений: окружность, эллипс, параболу и гиперболу.

Задача. Попробуйте объяснить принцип работы устройства для рисования параболы, придуманного Леонардо да Винчи, уяснив роль каждой детали и установив, какому элементу конуса она соответствует.

ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ

Изучая конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости. Было установлено, что эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу – как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу – как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.

Эти определения конических сечений как плоских кривых подсказывают и способ их построения с помощью натянутой нити.

Эллипс. Если концы нити заданной длины закреплены в точках F1 и F2 (рис. 2), то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F1 и F2 называются фокусами эллипса, а отрезки V1V2 и v1v2 между точками пересечения эллипса с осями координат – большей и малой осями. Если точки F1 и F2 совпадают, то эллипс превращается в окружность.

 

Рис. 2. ПОСТРОЕНИЕ ЭЛЛИПСА.

Гипербола. При построении гиперболы точка P, острие карандаша, фиксируется на нити, которая свободно скользит по шпенькам, установленным в точках F1 и F2, как показано на рис. 3,а. Расстояния подобраны так, что отрезок PF2 превосходит по длине отрезок PF1 на фиксированную величину, меньшую расстояния F1F2. При этом один конец нити проходит под шпеньком F1 и оба конца нити проходят поверх шпенька F2. (Острие карандаша не должно скользить по нити, поэтому его нужно закрепить, сделав на нити маленькую петлю и продев в нее острие.) Одну ветвь гиперболы (PV1Q) мы вычерчиваем, следя за тем, чтобы нить оставалась все время натянутой, и потягивая оба конца нити вниз за точку F2, а когда точка P окажется ниже отрезка F1F2, придерживая нить за оба конца и осторожно потравливая (т.е. отпуская) ее. Вторую ветвь гиперболы (P¢V2Q¢) мы вычерчиваем, предварительно поменяв ролями шпеньки F1 и F2.

 

Рис. 3. ПОСТРОЕНИЕ ГИПЕРБОЛЫ (а) и ее асимптот (б). При неограниченном продолжении ветви гиперболы стремятся к асимптотам.

Ветви гиперболы приближаются к двум прямым, которые пересекаются между ветвями. Эти прямые, называемые асимптотами гиперболы, строятся как показано на рис. 3,б. Угловые коэффициенты этих прямых равны ± (v1v2)/(V1V2), где v1v2 – отрезок биссектрисы угла между асимптотами, перпендикулярной отрезку F1F2; отрезок v1v2 называется сопряженной осью гиперболы, а отрезок V1V2 – ее поперечной осью. Таким образом, асимптоты являются диагоналями прямоугольника со сторонами, проходящими через четыре точки v1v2V1V2 параллельно осям. Чтобы построить этот прямоугольник, необходимо указать местоположение точек v1 и v2. Они находятся на одинаковом расстоянии, равном

 

от точки пересечения осей O. Эта формула предполагает построение прямоугольного треугольника с катетами Ov1 и V2O и гипотенузой F2O.

Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной. Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными.

Парабола. Фокусы эллипса и гиперболы были известны еще Аполлонию, но фокус параболы, по-видимому, впервые установил Папп (2-я пол. 3 в.), определивший эту кривую как геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой, которая называется директрисой. Построение параболы с помощью натянутой нити, основанное на определении Паппа, было предложено Исидором Милетским (6 в.). Расположим линейку так, чтобы ее край совпал с директрисой LL¢ (рис. 4), и приложим к этому краю катет AC чертежного треугольника ABC. Закрепим один конец нити длиной AB в вершине B треугольника, а другой – в фокусе параболы F. Натянув острием карандаша нить, прижмем острие в переменной точке P к свободному катету AB чертежного треугольника. По мере того, как треугольник будет перемещаться вдоль линейки, точка P будет описывать дугу параболы с фокусом F и директрисой LL¢, так как общая длина нити равна AB, отрезок нити прилегает к свободному катету треугольника, и поэтому оставшийся отрезок нити PF должен быть равен оставшейся части катета AB, т.е. PA. Точка пересечения V параболы с осью называется вершиной параболы, прямая, проходящая через F и V, – осью параболы. Если через фокус провести прямую, перпендикулярную оси, то отрезок этой прямой, отсекаемый параболой, называется фокальным параметром. Для эллипса и гиперболы фокальный параметр определяется аналогично.

 

Рис. 4. ПОСТРОЕНИЕ ПАРАБОЛЫ

 

Экспресс-курс "ОСНОВЫ ХИМИИ"

chemistry8

Для обучающихся 8 классов, педагогов, репетиторов. Подробнее...

 

Авторизация

Перевод сайта


СВИДЕТЕЛЬСТВО
о регистрации СМИ

Федеральной службы
по надзору в сфере связи,
информационных технологий
и массовых коммуникаций
(Роскомнадзор)
Эл. № ФС 77-44758
от 25 апреля 2011 г.


 

Учредитель и издатель:
АНОО «Центр дополнительного
профессионального
образования «АНЭКС»

Адрес:
191119, Санкт-Петербург, ул. Звенигородская, д. 28 лит. А

Главный редактор:
Ольга Дмитриевна Владимирская, к.п.н.,
директор АНОО «Центр ДПО «АНЭКС»