Образовательный портал

Электронный журнал Экстернат.РФ, cоциальная сеть для учителей, путеводитель по образовательным учреждениям, новости образования

  • Increase font size
  • Default font size
  • Decrease font size

Рейтинг: 4 / 5

Звезда активнаЗвезда активнаЗвезда активнаЗвезда активнаЗвезда не активна
 

 

 

 

 

Реферат

На тему:

«Эволюция звезд»

Ученика 10«А» класса

Гимназии №66

Легостина Артёма

 

 

 

 

 

 

 

 

Эволюция звезд и Солнца

Введение

Солнце – ближайшая к нам звезда, благодаря которой возможна жизнь на нашей планете. Поэтому изучение Солнца, его активности, жизненного цикла, химического состава так важно для нас. Но прежде необходимо ответить на следующие вопросы: что такое звезды; как они классифицируются; какой их жизненный цикл; какой жизненный цикл нашего Солнца. Ответив на эти вопросы, мы лучше поймем, что происходит с нашей звездой, что ждать от нее в будущем и как это отразится на жизни Земли.

1.           Звезды.

Начнем с определения звезды. Звезда - небесное тело, в котором идут, шли или будут идти термоядерные реакции. Но чаще всего звездой называют небесное тело, в котором идут в данный момент термоядерные реакции [1].

    Звезда - раскаленный газовый шар, а основным свойством газа является стремление расшириться и занять любой предоставляемый ему объем. Это стремление вызвано давлением газа и определяется его температурой и плотностью. В каждой точке внутри звезды действует сила давления газа, которая старается расширить звезду. Но в каждой же точке ей противодействует другая сила - сила тяжести вышележащих слоев, пытающихся сжать звезду. Однако ни расширения, ни сжатия не происходит, звезда устойчива. Это означает, что обе силы уравновешивают друг друга. А так как с глубиной вес вышележащих слоев увеличивается, то давление, а следовательно, и температура возрастают к центру звезды. 
    Звезда излучает энергию, вырабатываемую в ее недрах. Температура в звезде распределена так, что в любом слое в каждый момент времени энергия, получаемая от нижележащего слоя, равняется энергии, отдаваемой слою вышележащему. Сколько энергии образуется в центре звезды, столько же должно излучаться ее поверхностью, иначе равновесие нарушится. Таким образом, к давлению газа добавляется еще и давление излучения. Лучи, испускаемые звездой, получают свою энергию в недрах, где располагается ее источник, и продвигаются через всю толщу звезды наружу, оказывая давление на внешние слои. Если бы звездное вещество было прозрачным, то продвижение это осуществлялось бы почти мнгновенно, со скоростью света. Но оно непрозрачно и тормозит прохождение излучения. Световые лучи поглощаются атомами и вновь испускаются уже в других направлениях. Путь каждого луча сложен и напоминает запутанную зигзагообразную кривую. Иногда он "блуждает" многие тысячи лет, прежде чем выйдет на поверхность и покинет звезду. 

2.         Классификация звезд

2.1 Основная (Гарвардская) спектральная классификация

По спектрам звезд  астрономы изучают состав и строение звезд, физические процессы, протекающие в них, определяют расстояния до звезд и исследуют движение звезд в пространстве.

Спектры звезд впервые стали исследовать в начале XIX в. Однако в то время еще не были известны законы спектрального анализа (см. Электромагнитное излучение небесных тел). Лишь после открытия этих законов в середине XIX в. стали систематически наблюдать звездные спектры.

Первые наблюдения были визуальными, производились они с помощью спектроскопа. Применение фотографии во второй половине XIX в. открыло широкую дорогу спектральным исследованиям. Фотопластинка, помещенная в телескопе, перед объективом которого ставили призму, регистрировала сотни звездных спектров за одну экспозицию.

На основе многочисленных снимков спектров звезд, полученных в США на Гарвардской обсерватории, в начале XX в. была разработана детальная классификация звездных спектров. С небольшими изменениями она применяется и в настоящее время. Эта классификация звездных спектров называется гарвардской. Отдельные классы звезд обозначаются в ней буквами. Подклассы в каждом спектральном классе нумеруются цифрами от 0 до 9 после буквы, обозначающей класс. В классе О подклассы начинаются с О5. Последовательность спектральных классов отражает непрерывное падение температуры звезд по мере перехода к все более поздним спектральным классам.

В спектральном классе М имеется разветвление, указывающее на три немногочисленные группы холодных звезд спектральных классов R, N и S.

Подавляющее большинство звезд относится к последовательности от О до М. Эта последовательность непрерывна: характеристики звезд плавно изменяются при переходе и одного класса к другому.

Гарвардская спектральная классификация звезд основана на виде и числе спектральных линий (см. таблицу 1). В обычном звездном спектре, как и в спектре  Солнца, они выглядят темными линиями на светлом фоне непрерывного спектра. Линии принадлежат различным химическим элементам. Их вид в спектре обусловлен в основном температурой звезды. Приведем ниже более подробное описание спектральных классов и назовем яркие звезды, являющиеся типичными представителями их.

Класс О — самые горячие звезды во Вселенной. Температура (Т) их поверхности — в среднем около 40 000 К. В их спектрах основными линиями являются слабые линии водорода и ионизованного и нейтрального гелия. Пример: δ, λ и ξ  Ориона.

Класс В — менее горячие звезды. Т ~ 15 000 К. Линии водорода и гелия более четки, чем в классе О. Пример: Спика, Беллатрикс.

Таблица 1

Гарвардская спектральная классификация звезд

Класс

температура, К

цвет

Масса, Мсолнца

Радиус, R солнца

Светимость, L солнца

O

30000-60000

голубой

60

15

1400000

B

10000-30000

бело-голубой

18

7

20000

A

7500-10000

белый

3,1

2,1

80

F

6000-7500

белый

1,7

1,3

6

G

5000-6000

желтый

1,1

1,1

1,2

K

3500-5000

оранжевый

0,8

0,9

0,4

M

2000-3500

красный

0,3

0,4

0,04

 

Класс А характеризуется интенсивными широкими линиями водорода, линий гелия нет, появляются слабые линии металлов. Г=8500 К. Пример: Вега, Сириус.

Класс F - - линии водорода стали слабее, чем у класса А, много линий ионизованных металлов, в частности железа. Т —6600 К. Пример: Канопус, Процион.

Класс G — звезды со спектром, подобным солнечному.  Т~5500 К. Пример: Капелла, альфа Центавра, Солнце.

Класс К — звезды, более холодные, чем Солнце. Т~  4100 К. Линии водорода очень слабы, линии нейтральных металлов усилены, видны слабые полосы молекул СН и CN. Пример: Арктур.

Класс М — самые холодные звезды. Г~2800 К. Интенсивны линии металлов, а также полосы молекул (особенно окиси титана). В классах R и N видны темные полосы углерода и циана, а в классе S — окиси циркония. Примеры: Бетельгейзе, Антарес, Мира Кита.

Хотя спектральная классификация звезд основана на характеристиках спектральных линий, непрерывный спектр, на фоне которого эти линии наблюдаются, также существенно изменяется при переходе от класса О к классу М. У горячих звезд О и В усилена синяя часть спектра и слаба красная; звезды F и G-имеют наибольшую интенсивность излучения в желтых лучах, а звезды М светят преимущественно в красной области и крайне мало излучают в синей. В соответствии с этим изменяется цвет звезд: О и В — голубоватые звезды, А — белые, F и G — желтые, К — красноватые (оранжевые), М — красные.

Классификация, рассмотренная выше, является одномерной, так как основной характеристикой, учитываемой в ней, является температура звезды. Но среди звезд одного и того же спектрального класса есть звезды-гиганты и звезды-карлики. Они различаются по плотности газа в атмосфере, площади поверхности, светимости. Эти различия отражаются на спектрах звезд [2].

2.2. Йеркская классификация с учетом светимости звезд

В 1953 г. была разработана новая, уточненная двумерная классификация звезд. По этой классификации у каждой звезды кроме спектрального класса указывается еще класс светимости. Он обозначается римскими цифрами от I до VII[2], [].

Ia+ или 0 – гипергиганты;

I, Ia, Iab, Ib — сверхгиганты;

II, IIa, IIb — яркие гиганты;

III, IIIa, IIIab, IIIb — гиганты;

IV — субгиганты;

V, Va, Vb — карлики (звезды главной последовательности);

VI — субкарлики;

VII — белые карлики.

Новая классификация позволяет определять расстояния до звезд по их спектрам и видимым звездным величинам. Сейчас она является общепринятой и широко используется в астрономии.

2.3 Диаграмма Герцшпрунга — Рассела

Диаграмма Герцшпрунга — Рассела (см. рисунок 1) (варианты транслитерации: диаграмма Герцшпрунга — Рессела, Расселла, или просто диаграмма Г-Р или диаграмма цвет — звёздная величина) показывает зависимость между абсолютной звёздной величиной, светимостью, спектральным классом и температурой поверхности звезды. Неожиданным является тот факт, что звёзды на этой диаграмме располагаются не случайно, а образуют хорошо различимые участки.

Рисунок 1 - Диаграмма Герцшпрунга — Рассела

Была предложена в 1910 году независимо Эйнаром Герцшпрунгом (Дания) и Генри Расселом (США). Диаграмма используется для классификации звёзд и соответствует современным представлениям о звёздной эволюции.

Диаграмма даёт возможность (хотя и не очень точно) найти абсолютную величину по спектральному классу. Особенно для спектральных классов O—F. Для поздних классов это осложняется необходимостью сделать выбор между гигантом и карликом. Однако определённые различия в интенсивности некоторых линий позволяют уверенно сделать этот выбор.

Около 90 % звёзд находятся на главной последовательности. Их светимость обусловлена ядерными реакциями превращения водорода в гелий. Выделяется также несколько ветвей проэволюционировавших звёзд — гигантов, в которых происходит горение гелия и более тяжёлых элементов. В левой нижней части диаграммы находятся полностью проэволюционировавшие белые карлики [3].

3.         Эволюция звезд

Хотя по человеческой шкале времени звезды и кажутся вечными, они, подобно всему сущему в природе, рождаются, живут и умирают. Согласно общепринятой гипотезе газопылевого облака звезда зарождается в результате гравитационного сжатия межзвездного газопылевого облака. По мере уплотнения такого облака сначала образуется протозвезда, температура в ее центре неуклонно растет, пока не достигает предела, необходимого для того, чтобы скорость теплового движения частиц превысила порог, после которого протоны способны преодолеть макроскопические силы взаимного электростатического отталкивания и вступить в реакцию термоядерного синтеза.

В результате многоступенчатой реакции термоядерного синтеза из четырех протонов в конечном итоге образуется ядро гелия (2 протона + 2 нейтрона) и выделяется целый фонтан разнообразных элементарных частиц. В конечном состоянии суммарная масса образовавшихся частиц меньше массы четырех исходных протонов, а значит, в процессе реакции выделяется свободная энергия. Из-за этого внутренне ядро новорожденной звезды быстро разогревается до сверхвысоких температур, и его избыточная энергия начинает выплескиваться по направлению к ее менее горячей поверхности — и наружу. Одновременно давление в центре звезды начинает расти. Таким образом, «сжигая» водород в процессе термоядерной реакции, звезда не дает силам гравитационного притяжения сжать себя до сверхплотного состояния, противопоставляя гравитационному коллапсу непрерывно возобновляемое внутреннее термическое давление, в результате чего возникает устойчивое энергетическое равновесие. О звездах на стадии активного сжигания водорода говорят, что они находятся на «основной фазе» своего жизненного цикла или эволюции. Превращение одних химических элементов в другие внутри звезды называют ядерным синтезом или нуклеосинтезом.

Чем массивнее звезда, тем большим запасом водородного топлива она располагает, но для противодействия силам гравитационного коллапса ей приходится сжигать водород с интенсивностью, превосходящей по темпу роста темп роста запасов водорода по мере увеличения массы звезды. Таким образом, чем массивнее звезда, тем короче время ее жизни, определяемое исчерпанием запасов водорода, и самые крупные звезды в буквальном смысле сгорают за «какие-то» десятки миллионов лет. Самые мелкие звезды, с другой стороны, «безбедно» живут сотни миллиардов лет. Так что по этой шкале наше Солнце относится к «крепким середнякам».

Рано или поздно, однако, любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород. Что дальше? Это также зависит от массы звезды. Звезды класса Gзаканчивают свою жизнь весьма банальным образом. По мере истощения запасов водорода в недрах звезды силы гравитационного сжатия, терпеливо ожидавшие этого часа с самого момента зарождения светила, начинают одерживать верх — и под их воздействием звезда начинает сжиматься и уплотняться. Этот процесс приводит к двоякому эффекту: Температура в слоях непосредственно вокруг ядра звезды повышается до уровня, при котором содержащийся там водород вступает, наконец, в реакцию термоядерного синтеза с образованием гелия. В то же время температура в самом ядре, состоящем теперь практически из одного гелия, повышается настолько, что уже сам гелий — своего рода «пепел» затухающей первичной реакции нуклеосинтеза — вступает в новую реакцию термоядерного синтеза: из трех ядер гелия образуется одно ядро углерода. Этот процесс вторичной реакции термоядерного синтеза, топливом для которого служат продукты первичной реакции, — один из ключевых моментов жизненного цикла звезд.

При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает буквально раздуваться. При этом совокупная энергия излучения звезды остается примерно на том же уровне, что и в течение основной фазы ее жизни, но, поскольку излучается эта энергия теперь через значительно большую площадь поверхности, внешний слой звезды остывает до красной части спектра. Звезда превращается в красный гигант.

Для звезд класса Gпосле истощения топлива, питающего вторичную реакцию нуклеосинтеза, снова наступает стадия гравитационного коллапса — на этот раз окончательного. Температура внутри ядра больше не способна подняться до уровня, необходимого для начала термоядерной реакции следующего уровня. Поэтому звезда сжимается до тех пор, пока силы гравитационного притяжения не будут уравновешены следующим силовым барьером. В его роли выступает давление вырожденного электронного газа. Электроны, до этой стадии игравшие роль безработных статистов в эволюции звезды, не участвуя в реакциях ядерного синтеза и свободно перемещаясь между ядрами, находящимися в процессе синтеза, на определенной стадии сжатия оказываются лишенными «жизненного пространства» и начинают «сопротивляться» дальнейшему гравитационному сжатию звезды. Состояние звезды стабилизируется, и она превращается в вырожденного белого карлика, который будет излучать в пространство остаточное тепло, пока не остынет окончательно.

Звезды более массивные (класса A, B, O) ждет куда более зрелищный конец. После сгорания гелия их масса при сжатии оказывается достаточной для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций нуклеосинтеза — углерода, затем кремния, магния — и так далее, по мере роста ядерных масс. При этом при начале каждой новой реакции в ядре звезды предыдущая продолжается в ее оболочке. На самом деле, все химические элементы вплоть до железа, из которых состоит Вселенная, образовались именно в результате нуклеосинтеза в недрах умирающих звезд этого типа. Но железо — это предел; оно не может служить топливом для реакций ядерного синтеза или распада ни при каких температурах и давлениях, поскольку как для его распада, так и для добавления к нему дополнительных нуклонов необходим приток внешней энергии. В результате массивная звезда постепенно накапливает внутри себя железное ядро, не способное послужить топливом ни для каких дальнейших ядерных реакций.

Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. И за очень короткий отрезок времени — некоторые теоретики полагают, что на это уходят считанные секунды, — свободные на протяжении всей предыдущей эволюции звезды электроны буквально растворяются в протонах ядер железа, всё вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление вырожденного электронного газа падает до нуля. Внешняя оболочка звезды, из под которой оказывается выбита всякая опора, обрушивается к центру. Энергия столкновения обрушившейся внешней оболочки с нейтронным ядром столь высока, что она с огромной скоростью отскакивает и разлетается во все стороны от ядра — и звезда буквально взрывается в ослепительной вспышке сверхновой звезды. За считанные секунды при вспышке сверхновой может выделиться в пространство больше энергии, чем выделяют за это же время все звезды галактики вместе взятые.

После вспышки сверхновой и разлета оболочки у звезд класса O, Bпродолжающийся гравитационный коллапс приводит к образованию нейтронной звезды, вещество которой сжимается до тех пор, пока не начинает давать о себе знать давление вырожденных нейтронов — иными словами, теперь уже нейтроны (подобно тому, как ранее это делали электроны) начинают противиться дальнейшему сжатию, требуя себе жизненного пространства. Это обычно происходит по достижении звездой размеров около 15 км в диаметре. В результате образуется быстро вращающаяся нейтронная звезда, испускающая электромагнитные импульсы с частотой ее вращения; такие звезды называются пульсарами. Наконец, если масса ядра звезды превышает 30 солнечных масс (класс О), ничто не в силах остановить ее дальнейший гравитационный коллапс, и в результате вспышки сверхновой образуется черная дыра.

4.    Эволюция солнца

Как и все звёзды, Солнце родилось в сжавшейся газопылевой туманности. Когда столь грандиозная масса сжималась, она сама себя сильно разогрела внутренним давлением до температур, при которых в её центре смогли начаться термоядерные реакции. В центральной части температура на Солнце равна 15.000.000 К, а давление достигает сотни миллиардов атмосфер. Так зажглась новорожденная звезда (не путайте с новыми звёздами).

Масса Солнца составляет 99,866 % от суммарной массы всей Солнечной системы. Солнце состоит из водорода (~73 % от массы и ~92 % от объёма), гелия (~25 % от массы и ~7 % от объёма) и других элементов с меньшей концентрацией: железа, никеля, кислорода, азота, кремния, серы, магния, углерода, неона, кальция и хрома. На 1 млн атомов водорода приходится 98 000 атомов гелия, 851 кислорода, 398 углерода, 123 неона, 100 азота, 47 железа, 38 магния, 35 кремния, 16 серы, 4 аргона, 3 алюминия, по 2 атома никеля, натрия и кальция, а также совсем немного всех прочих элементов. Средняя плотность Солнца составляет 1,4 г/см³, то есть равна плотности воды в Мёртвом море.

По спектральной классификации Солнце относится к типу G2V («жёлтый карлик»). Температура поверхности Солнца достигает 6000 К, поэтому Солнце светит почти белым светом, но из-за более сильного рассеяния и поглощения коротковолновой части спектра атмосферой Земли прямой свет Солнца у поверхности нашей планеты приобретает некоторый жёлтый оттенок (при ясном небе, в сумме с голубым оттенком рассеянного света от неба общее освещение объектов на Земле вновь становится белым)[4].

За время жизни - 5 миллиардов лет, в центре нашего светила, где температура достаточно высока, сгорело около половины всего имеющегося там водорода. Где-то столько же, 5 миллиардов лет, Солнцу осталось жить.

  Заключение

После того, как запас водорода иссякнет, наше Солнце будет напоминать постоянно расширяющийся воздушный шар или, говоря научными терминами, Красный гигант. При этом будет можно утверждать, что будут полностью уничтожены Венера и Меркурий, а также, скорее всего и Земля, так как при расширении Красные гиганты увеличиваются в размерах в тысячи раз.

В итоге внешние слои Красного гиганта остынут и будут отброшены, оставив лишь ядро звезды или, к тому моменту это уже будет не ядро, а так называемый Белый Карлик, температура которого примерно равна температуре нынешнего Солнца, а вот размеры сопоставимы с размером Земли.

 

Список литературы.

1.     http://ru.wikipedia.org/wiki/%C7%E2%E5%E7%E4%E0

2.     http://avisdim.narod.ru/diction/J/j20.htm

3.     http://ru.wikipedia.org/wiki/Диаграмма_Герцшпрунга_—_Рассела

4.     http://www.krugosvet.ru/enc/nauka_i_tehnika/astronomiya/SOLNTSE.htm

 

Экспресс-курс "ОСНОВЫ ХИМИИ"

chemistry8

Для обучающихся 8 классов, педагогов, репетиторов. Подробнее...

 

Авторизация

Перевод сайта


СВИДЕТЕЛЬСТВО
о регистрации СМИ

Федеральной службы
по надзору в сфере связи,
информационных технологий
и массовых коммуникаций
(Роскомнадзор)
Эл. № ФС 77-44758
от 25 апреля 2011 г.


 

Учредитель и издатель:
АНОО «Центр дополнительного
профессионального
образования «АНЭКС»

Адрес:
191119, Санкт-Петербург, ул. Звенигородская, д. 28 лит. А

Главный редактор:
Ольга Дмитриевна Владимирская, к.п.н.,
директор АНОО «Центр ДПО «АНЭКС»