Особенности задач на готовых чертежах
Макарина Наталья Владимировна
Стереометрические задачи имеют ряд особенностей, которые обуславливают определенные трудности при их решении. Одна из главных трудностей – это изображение объемной фигуры на плоскости. Если в планиметрии правильность изображения зависела только от тщательности, с какой выполняется чертеж, то в стереометрии дело обстоит совсем по-другому. При изображении, например, прямоугольного треугольника, вряд ли на чертеже он действительно будет прямоугольным, или при изображении скрещивающихся прямых, на чертеже они окажутся пересекающимися или параллельными. То есть получается, что для того чтобы решать задачи, заданные словесным описанием, нужно, во-первых, уметь правильно изображать фигуру с учетом всех ее свойств и свойств параллельной проекции, во-вторых, нужно уметь правильно представлять пространственную модель фигуры по ее условному изображению. И помогают сформировать эти умения и развить их задачи на моделях, на развертку, на конструирование, на готовых чертежах.Разделим эти задачи по виду их представления учащимся на две группы: задачи на моделях и задачи на чертежах. К первой группе задач отнесем не только задачи, которые предлагаются учителем на моделях каких-то многогранников, на какой-то смоделированной ситуации, но и задачи на развертку, задачи, которые требуют сконструировать какую-то модель. То есть отнесем задачи, которые требуют от учащихся разнообразных действий с моделями. Ко второй группе задач отнесем задачи, которые представлены на чертежах. То есть уже изображена фигура (или какая-то нужная ситуация), на которой отражены определенные свойства фигуры и, либо записано только то, что нужно найти, либо еще и условие задачи, но очень кратко. К таким задачам так же можно отнести задачи и на развертку. Только в этом случаи, в отличие от первого, развертка будет не предъявлена, а изображена.
И те, и другие задачи необходимы на первом этапе развития пространственных представлений, для формирования и создания целостного образа фигуры, ее свойств. И, с одной стороны, нужно предъявлять учащимся объемные модели, а, с другой стороны, нужно использовать соответствующие им чертежи. И в результате таких действий учащиеся устанавливают соответствия между элементами объемных и плоских моделей.
Конечно, работа с моделями, конструирование их учащимися повышает интерес учащихся к теме урока, усиливает внимание к излагаемому материалу. Однако нужно постепенно отказываться от моделей, так как, если привлекать к каждой задаче соответствующую модель, она начинает выступать в качестве подсказки, что тормозит развитие пространственного мышления.
Задачи же на готовых чертежах и при дальнейшем их использовании способствуют развитию пространственных представлений. В этих задачах объемная фигура сразу дается в плоскости чертежа, с отмеченными на нем свойствами фигуры. И учащимся необходимо будет мысленно поворачивать эту фигуру, рассматривать с разных сторон, для того, чтобы решить эту задачу, сделать правильные выводы.
Задачи на готовых чертежах полезны для формирования какого-то понятия, создания у учащихся образа фигуры, ее свойств. Например, при изучении понятия пирамида, можно заготовить следующие вопросы:
Какие изображения геометрических фигур сделаны неправильно? Какие фигуры изображены на рисунке? (На рисунке все фигуры могут быть изображены правильно, и все они представляют пирамиду. Но каждое из изображений может вызвать у школьника сомнение, так как все фигуры изображены в непривычном виде. В дальнейшем, при решении более сложных задач, учитель может сделать не вполне правильный чертеж, задать какие-то данные, а потом, путем анализа получившихся противоречий с данными условия, скорректировать его).
Подобные задания обеспечивают создание у учащихся геометрического образа и предполагают: анализ существенных признаков фигуры, ее пространственных и метрических соотношений; мысленную группировку отдельных элементов фигуры; определение фигуры как носителя понятия, установление ее вида; актуализацию основных свойств фигуры.
Задачи на готовых чертежах можно использовать при изучении любой темы в геометрии, они очень удобны для систематического учета знаний, умений, навыков каждого ученика на уроке. К концу урока учителю нужно знать, как усвоили ученики новые понятия, содержание теорем и методы их доказательства, важнейшие свойства геометрических фигур, и в этом деле большим помощником как раз являются задачи на готовых чертежах. Они помогают организовать быструю эффективную обратную связь (ученик-учитель). Такая оперативная обратная связь нужна и для систематической проверки правильности выполнения домашних заданий. Учитель может заранее приготовить чертежи на доске для работы, например, со всем классом либо приготовить их на карточках для индивидуальной работы каждого школьника. Задачи на готовых чертежах имеют целый ряд дидактических достоинств. В частности, на запись, оформление чертежа и решение письменной задачи ученики часто тратят больше времени, чем на поиск ее решения. Поэтому на готовых чертежах применяются некоторые способы более рациональной и наглядной записи условия задач и оформления чертежей. Дополнительные обозначения на самих чертежах облегчают понимание условия задачи, ускоряют составление плана решения, что очень важно.
Итак, сформулируем требования к задачам на готовых чертежах. Такие задачи должны содержать лишь необходимую информацию для точного понимания ее наблюдателем, они не содержат лишних визуальных раздражителей. Все необходимые условия отражаются на самом чертеже (например, равенство отрезков, перпендикулярность прямых), иногда некоторые элементы чертежа можно выделить другим цветом. Те условия задачи, которые не удобно показывать на чертеже, выносятся рядом и записываются символьно, таким же образом рядом с чертежом записывается, то, что надо найти.