Контроль теоретических знаний по высшей математике

студентов технического ВУЗа

Семенова Надежда Игоревна,

СПбГЛТУ, кандидат технических наук, доцент кафедры высшей математики

ГБОУ СОШ №16, старший методист

В последние годы принимать теоретический экзамен у студентов в классической форме стало неудобно. Студент долго готовится к ответу, излагая не всегда хорошо выученный и до конца понятый им материал в рукописном виде. Далее преподаватель либо слушает монотонное изложение вопроса по только что написанному тексту, либо пытается беседовать со студентом. Во втором случае оценка рискует превратиться в неудовлетворительную, особенно если студент материал знает нетвердо и при этом сильно волнуется. В итоге обе стороны (и принимающая экзамен, и сдающая его) тратят много времени, но подчас не приходят к положительному результату.

Стоит также учитывать факт промежуточной балльной аттестации студентов, которую приходится осуществлять преподавателю дважды в течение семестра. Если при этом лектор не проводит практических занятий со своими студентами, то аттестовать их классическим способом попросту не представляется возможным.

Стандартную контрольную работу, хоть и являющуюся фронтальной формой контроля, также придется отвергнуть — она требует достаточно времени для написания ее студентом и проверки преподавателем. Кроме того, составить работу, в большей степени проверяющую знание теории, а не практические умения и навыки решения задач, довольно затруднительно.

Сложившаяся ситуация естественным образом предполагает смену форм контроля теоретических знаний. В этот момент имеет смысл вспомнить, что средней школы окончании нынешние студенты ПО сдавали единый государственный экзамен в форме тестирования. Помимо этого, по окончании курса высшей математики ВУЗ достаточно часто проводит интернетзнания студентов. Таким образом, тестирование остаточные V промежуточную аттестацию также будет удобно проводить с помощью тестовых заданий.

Нет необходимости говорить о настоящем тестировании, поскольку понятие теста подразумевает выполнение определенных жестких требований. Вопросы должны располагаться в строгом порядке возрастания сложности, необходимо наличие хорошего инструментария подсчета результатов и их

интерпретации. Все это подразумевает использование компьютерной техники и большого вложения сил программистов.

В обычной ситуации достаточно корректно составленных, охватывающих весь изученный по заданной теме материал тестовых заданий, выполнение которых можно проводить как фронтально, так и индивидуально, а проверка не занимает много времени. При грамотно составленной базе данных количество вариантов и уровень их сложности можно варьировать, ориентируясь на конкретную ситуацию. Задания могут быть как закрытого типа (на множественный выбор, установление соответствия или установление последовательности), так и открытого типа (на дополнение или свободное изложение).

Приведем несколько вариантов тестовых заданий, использовавшихся для контроля теоретических знаний студентов Лесотехнического университета.

Тема «Кривые второго порядка».

Заполните пропуски в нижеследующем тексте.

заполните пропуски в нижеслеоующем тексте.
Кривые второго порядка на плоскости задаются уравнением
$Ax^{2} + 2Bxy + Cy^{2} + 2Dx + 2Ey + F = 0$, где коэффициенты уравнения –
числа, и по крайней мере один из коэффициентов
A,B,C
Эллипсом называется множество всех точек плоскости, расстояний от каждой из которых до двух данных точек этой плоскости, называемых, есть величина постоянная $(2a)$,, чем расстояние между фокусами $(2c)$.
Эллипс есть кривая второго порядка. Каноническое уравнение эллипса имеет вид
Фокусы эллипса имеют координаты, а
его вершины – координаты Для решения
задач удобно знать связь между параметрами a,b,c :
При $a = b$ уравнение эллипса принимает вид и он превращается в
В качестве характеристики формы эллипса используется отношение
$\frac{c}{a}$ = ϵ , называемое Чем меньше ϵ , тем эллипс будет
сплющенным. Прямые $x = \pm \frac{a}{\epsilon}$ называются
эллипса.
Если центр эллипса смещен в точку (x_0, y_0) , его уравнение имеет вид

Тема «Функция одной переменной».

Отвечия на вопрос, выоерите обин из преоложенных ответов.
1. Задана функция $f: X \to Y$. Переменная $x \ (x \in X)$ при этом называется:
□ зависимая переменная; □ аргумент; □ частное значение функции.
2. є-окрестностью числа 6 является интервал:
\Box (3;6); \Box (3,9;8,3); \Box (4,3;7,7); \Box (4;7).
3. Для функции $y = f(x)$ выполнено свойство: для любого значения аргумента x из ее области определения $f(-x) = f(x)$. Такая функция называется:
□ непрерывной; □ четной; □ периодической; □ нечетной.
4. Предел $\lim_{x\to 0} (x-a)$, где $a \in R$, равен:
$\square a; \square -a; \square \infty; \square 0.$
5. Уравнением касательной к графику функции $y = f(x)$ в точке с абсциссой x_0 является:
$\Box y - y_0 = \frac{1}{f'(x_0)}(x - x_0); \qquad \Box y - y_0 = -f'(x_0)(x - x_0);$
$ \Box y - y_0 = f'(x_0)(x - x_0); \qquad \Box y - y_0 = -\frac{1}{f'(x_0)}(x - x_0). $
6. Производная функции $y(x) = \cos kx$, где $k \in R$, равна:
$\Box -\sin kx; \Box k\sin x; \Box -k\sin kx; \Box \frac{1}{k}\sin kx.$
7. Если существует такая δ -окрестность точки x_0 , что для всех $x \neq x_0$ из этой
окрестности выполняется неравенство $f(x) > f(x_0)$, то точка x_0 называется:
□ точкой максимума; □ точкой минимума; □ точкой перегиба.
8. Если график функции $y = f(x)$ расположен выше любой своей касательной
на некотором интервале, то на этом интервале график:
□ вогнутый; □ выпуклый; □ имеет точку перегиба.
9. Правило Лопиталя используется для раскрытия неопределенности вида:
$\square \ 1^{\infty}; \square \ \frac{0}{0}; \square \ 0 \cdot \infty; \square \ \infty - \infty.$
10. Прямая $y = kx + b$ является наклонной асимптотой графика функции
y = f(x). Тогда значение коэффициента k находится по формуле:

$\Box \lim_{x \to \infty} \frac{f(x)}{x}; \qquad \Box \lim_{x \to 0} \frac{f(x)}{x}; \qquad \Box \lim_{x \to \infty} \frac{x}{f(x)}; \qquad \Box \lim_{x \to 0} \frac{x}{f(x)}.$
Тема «Обыкновенные дифференциальные уравнения».
Сопоставьте номер уравнения (часть A) с его типом (часть B) и методом решения (часть C). Если порядок уравнения выше первого, укажите его рядом с уравнением.
(A) 5. $y''' - y'' - y' + y = 0$;
1. $y'' - 6y' + 9y = 9x^2 - 39x + 65$; 6. $xy' = y + (x + y) \cdot \ln \frac{x + y}{x}$;
2. $\sqrt{5+y^2}dx + 4(x^2y+y)dy = 0;$
3. $3y' - y = \frac{x+1}{y^2}$; 8. $y' = \frac{x+3y-4}{5x-y-4}$;
$\mathbf{\delta.} \ \ y + y tgx = \sin 2x;$
4. $y' + \frac{(1-2x)y}{x^2} = 1;$ 9. $x(2-9xy^2)dx + y(4y^2 - 6x^3)dy = 0.$
(B)
уравнение Бернулли;
линейное неоднородное уравнение с постоянными коэффициентами;
уравнение с разделяющимися переменными;
линейное уравнение 1 порядка;
однородное уравнение 1 порядка;
уравнение в полных дифференциалах;
уравнение, сводящееся к однородному;
линейное однородное уравнение с постоянными коэффициентами;
уравнение, допускающее понижение порядка
(C)
деление на функцию, отличную от нуля;
замена $y' = z$, где $z = z(x)$ или $z = z(y)$, или двукратное интегрирование
подстановка $y(x) = u(x) \cdot v(x)$;
метод неопределенных коэффициентов;
замена $z = \frac{x}{y}$ или $z = \frac{y}{x}$;
замена $x=v+s$, $y=u+t$, где s и t находятся из системы $\begin{cases} as+bt+c=0\\ ms+nt+l=0 \end{cases}$

восстановление функции двух переменных по ее дифференциалу	•
получение общего решения по корням характеристического уравнения	_·