Методическая разработка урока по геометрии 8 классе

Кожокарь Ирина Евгеньевна, учитель математики.

ГБОУ СОШ № 354 г. Санкт-Петербурга

Тема урока: «Соотношение между сторонами и углами прямоугольного треугольника»

Цели урока:

• <u>образовательная</u>:

обобщить понятия синус, косинус, тангенс острого угла в прямоугольном треугольнике, исследовать зависимости и соотношения между этими величинами; формирование умений и навыков в применении соотношений между сторонами и углами прямоугольного треугольника; формирование умений работать с задачей.

<u>Познавательный аспект</u>: уметь приобретать новые знания, используя различные подходы.

• развивающая:

развитие памяти, мышления, наблюдательности, внимательности; развитие познавательного интереса; развитие познавательных и исследовательских умений учащихся, повышение культуры общения; развитие математической речи учащихся в процессе выполнения устной работы по воспроизведению теоретического материала; развитие у школьников самостоятельности мышления.

• <u>воспитательная</u>:

воспитание самостоятельности, аккуратности, умения отстаивать свою точку зрения, умения выслушать других, способствовать повышению активности учащихся на уроке, повышению грамотности устной и письменной речи.

Тип урока: комбинированный.

Формы организации познавательной деятельности: Фронтальная, индивидуальная, групповая .

Оборудование: тестовые работы, презентация (при наличии необходимого оборудования), карточки для блиц- опроса, модели треугольников.

№ п/п	Этапы урока	Время
1.	Организационный момент.	1-2
2.	Сообщение темы и целей урока	2-3
3.	Воспроизведение опорных знаний	10

4.	Повторение изученного материала	3-4
5.	Решение задач	
6.	Рефлексия.	
7.	Подведение итогов. Выставление оценок	
8.	Постановка домашнего задания	

Эпиграф: Не стыдно чего-нибудь не знать, но стыдно не хотеть учиться (Сократа)

Ход урока

1. Организационный момент.

2.Сообщение темы и целей урока

Учитель: мы заканчиваем изучение темы «Соотношения между сторонами и углами треугольника», сегодня мы проводим обобщающий урок по этой теме и основной целью нашего урока является — систематизация и обобщение знаний учащихся.

Мотивация урока. (слайд 1)

Один мудрец сказал: « Высшее проявление духа — это разум. Высшее проявление разума — это геометрия. Клетка геометрии — это треугольник. Он так же неисчерпаем, как и Вселенная...»

У вас может возникнуть вопрос: Почему в геометрии особое внимание уделяется прямоугольному треугольнику, хотя не часто встречаются предметы подобной формы?

Как в химии изучают вначале элементы, а затем – их соединения, в биологии – одноклеточные, а потом – многоклеточные организмы, так и в геометрии – точки, отрезки и треугольники, из которых состоят другие геометрические фигуры.

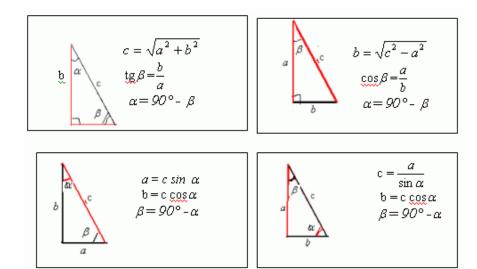
Среди этих фигур прямоугольный треугольник играет особую роль. Действительно, любой многоугольник можно разбить на треугольники, умея находить угловые и линейные элементы этих треугольников, можно найти все элементы многоугольника. В свою очередь, любой треугольник можно разбить одной из его высот на два прямоугольных треугольника, элементы которых связаны более простой зависимостью. Найти элементы треугольника можно. Если свести задачу к решению этих двух прямоугольных треугольников.

3. Воспроизведение опорных знаний

Блиц – опрос (слайд № 2)

(слайд № 3)

Вариант 1	Вариант 2	
1.Закончите предложение:	1.Закончите предложение: «Синусом	
«Косинусом острого угла прямоугольного	острого угла прямоугольного треугольника	
треугольника называется отношение»	называется отношение»	
2.Закончите предложение: «Тангенсом	2. Закончите предложение: «Если острый	
острого угла прямоугольного треугольника	угол одного прямоугольного треугольника	
называется отношение»	равен острому углу другого	
	прямоугольного треугольника, то»	
3. Запишите, используя обозначения	3. Запишите, используя обозначения синус	
1	$\sqrt{2}$	
косинус 60° равен 2	45° pasen 2	
4.Запишите основное тригонометрическое	4. Запишите формулой, чему равен тангенс	
тождество	угла А	
5. Может ли синус острого угла равняться	5. Тангенс острого угла прямоугольного	
1,01?	треугольника равен единице. Какого вида	
	этот треугольник?	
Чему равен?	Чему равен?	
6. Sin 60°	6. Cos 30°	
7. Cos 45°	7. Sin 45°	
8. Tg 60°	8. Tg 30°	

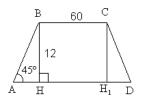

(слайд №4)

Ответы	Ответы
1прилежащего катета к гипотенузе;	1противолежащего катета к гипотенузе;
2противолежащего катета к	2синусы, косинусы, тангенсы этих углов
прилежащему;	также равны;
3. cos60°=1/2;	$\sqrt{2}$
	$3. \sin 45^{\circ} = \frac{1}{2}$
4. $\sin^2 A + \cos^2 A = 1$;	$4. tgA = \frac{\sin A}{\cos A}$
5. Нет;	5. равнобедренный;
$6.\frac{\sqrt{3}}{2}$	$6.\frac{\sqrt{3}}{2}$
$7.\frac{\sqrt{2}}{2}$	$7.\frac{\sqrt{2}}{2}$

$8.\sqrt{3}$	$8.\frac{\sqrt{3}}{3}$

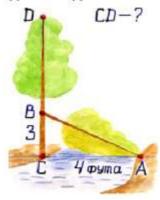
4. Повторение изученного материала

Вспомним содержание основных задач на решение прямоугольных треугольников. Решение данных задач основано на теореме Пифагора и понятиях sin a, cos a, tg a



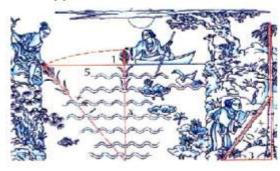
5. Решение задач

Решение многих прикладных задач основано на решении прямоугольных треугольников. Рассмотрим некоторые виды прикладных задач.


- 1) Задачи на нахождение высоты предмета, основание которого доступно.
- 2) Задачи на нахождение высоты предмета, основание которого недоступно.
- 3) Задачи на нахождение расстояния между двумя пунктами, которые разделяет препятствие.
- 4) Задачи на нахождение углов.

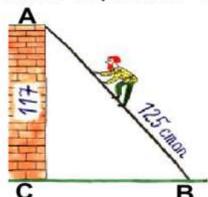
Задача. Насыпь шоссейной дороги имеет в верхней части ширину 60 м. Какова ширина насыпи в нижней её части, если угол наклона откосов к горизонту равен 60°, а высота насыпи равна 12 м.(учебник № 600) (слайд № 7)

Решение исторических задач. (слайд №8)


Задача индийского математика XII века Бхаскары

Ава берегу реки рос тополь одинокий. Вдруг ветра порыв его ствол надломал. Бедный тополь упал. И угол прямой С теченьем реки его ствол составлял. Запомни теперь, что в этом месте река В четыре лишь фута была широка Верхушка склонилась у края реки. Осталось три фута всего от ствола, Прошу тебя, скоро теперь мне скажи: У тополя как велика высота?»

(слайд № 9)


Задача из китайской «Математики в девяти книгах»

«Имеется водоем со стороной в 1 чжан = 10 чи. В центре его растет қамыш, қоторый выступает над водой на 1 чи. Если потянуть қамыш қ берегу, то он қақ раз қоснётся его. Спрашивается: қақова глубина воды и қақова длина қамыша?».

(слайд № 10)

Задача из учебника «Арифметика» Леонтия Магницкого

«Случися некому человеку к стене лестницу прибрати, стены же тоя высота есть 117 стоп. И обреете лестницу долготью 125 стоп. И ведати хочет, колико стоп сея лестницы нижний конец от стены отстояти имать.»

1. Самостоятельная работа. (слайд № 12)

Раздаем карточки

Вариант1	Вариант 2
1.Найдите синус угла А \triangle ABC, угол C=90°, если BC=4, AB= 5. а) $\frac{5}{4}$; б) $\frac{4}{5}$; в) $\frac{3}{5}$; г) $\frac{5}{3}$.	1.Найдите косинус углаВ \triangle ABC, угол C=90°, если BC=3, AB= 5 $a)\frac{5}{3}; \delta)\frac{4}{5};$ $\beta(\frac{3}{5}; \epsilon)\frac{5}{4}.$

$a)\frac{5}{8};\delta)\frac{12}{5};$ $\sin \alpha = \frac{5}{13} \epsilon)\frac{5}{12};\epsilon)\frac{8}{5}.$	$a)\frac{9}{8};\delta)\frac{15}{8};$ $\cos \alpha = \frac{8}{17} \epsilon)\frac{8}{15};\epsilon)\frac{8}{9}.$
3. Дано: △АВС, ВС=5см угол С=90°, угол А=41°	2. Дано: △АВС,ВС=9см, уголС=90°, угол В=49°
Найти: АС	Найти: АС
а) 5* cos41°;	а) 9: tg49°;
б) 5:tg41°;	б) 9*cos49°;
с) 5* tg41°;	в) 9: sin49°;
г) 5: sin41°.	г) 9* tg49°.
4. sin ² 60° - 3* tg 45°	4. cos ² 45° - 4* sin 30°
a) -2,25;	a) -2;
δ) -1,25;	δ) -3;
в) -0,75;	β) -1,5;
γ) -1,5.	Γ) -2,5.

6.Рефлексия. (слайд № 13)

- ✓ Трудным ли для тебя был материал урока?
- ✓ На каком из этапов урока было труднее всего, легче всего?
- ✓ Работал ли ты на уроке в полную меру сил?
- ✓ Как эмоционально ты чувствовал себя на уроке?

7.Подведение итогов. Выставление оценок

8. Домашнее задание. (слайд № 14)

Письменно № 599,602

Повторить п. 66, 67.

- Спасибо урок окончен. До свидания! (слайд № 15)

Используемая литература:

Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия, 7-9: учеб. Для общеобразоват. учреждений. – 18-е изд. – М.:Просвещение, 2008.

Изучение геометрии в 7-9 классах: Методические рекомендации; Кн. Для учителя / Л.С.Атанасян, В.Ф.Бутузов, Ю.А.Глазков и др. – М.:Просвещение, 1997.

Гаврилова Н.Ф. Поурочные разработки по геометрии, 8 класс – М.: «ВАКО», 2004.

Электронная поддержка урока:

Авторская презентация «Соотношения между сторонами и углами прямоугольного треугольника»

Подсказка ученикам, лучше раздать каждому

	Vеновие запани А провити вашания		
Условие задачи			Алгоритм решения
1	A	Дано: АС=в, ВС=а.	$1)AB = \sqrt{a^2 + b^2},$
	K	Найти: AB, <a, <b.<="" th=""><th>2) $tgA = \frac{a}{B}$;</th></a,>	2) $tgA = \frac{a}{B}$;
			$(3) < B = 90^{\circ} - < A.$
	C		3) 2 30 11.
	_		
	В		
	C a B		
	C a B		
2	A	Дано: АВ=с, ВС=а.	1)AC= $\sqrt{c^2 - a^2}$,
		Найти: AC, <a, <b.<="" th=""><th>2) $\sin A = \frac{a}{c}$;</th></a,>	2) $\sin A = \frac{a}{c}$;
			3) <b=90° -="" <a.<="" th=""></b=90°>
	\ c		3) \D-90 - \A.
	В		
	G		
	C a B		
3	A	Дано: АВ=с, <А=а	1) <b=90° -="" <a,<="" th=""></b=90°>
		Найти: АС,ВС, <В.	2) AC=c·cosα,
			3) BC=c·sinα.
	В		
	C a B		
4	<u> </u>	Дано: <А=а, ВС=а.	1) <b=90° -="" <a,<="" th=""></b=90°>
	\mathbf{A}	Найти: АС, АВ, <В.	(2) AB= $\frac{a}{1}$
	\sim	, , ,	2) $AB = \frac{a}{\sin \alpha}$, 3) $AC = \frac{a}{tg\alpha}$.
			$AC = \frac{1}{\text{tg}\alpha}$.
	\ <u>`</u> c		
	В		
	C a B		