Учебно-методическая разработка

Восьмеричная и шестнадцатеричные системы счисления. «Компьютерные» системы счисления

Жукова Ольга Юрьевна, преподаватель информатики и ИКТ КМКК Кронштадтского района. Санкт-Петербурга

Место темы в разделе и в курсе «Информатика и ИКТ» Тема «Восьмеричная и шестнадцатеричные системы счисления. «Компьютерные» системы счисления» изучается в базовом курсе информатики, в 9 классе по учебнику Л.Л.Босовой, А.Ю. Босовой в главе 1 «Математические основы информатики». На изучение раздела отводится 6 часов. Подробнее в последующем эта тема изучается в 10, 11-х классах.

Урок начинаем с того, что повторяем материал, пройденный на предыдущем уроке «Двоичная система счисления. Двоичная арифметика».

Уже знаем:

- Системы счисления;
- Позиционные СС:
- Основание системы счисления;
- Непозиционные СС;
- Десятичная СС;
- Развернутая форма записи числа;
- Двоичная СС;

Что узнаем на этом уроке:

- Восьмеричная система счисления;
- Шестнадцатеричная система счисления;
- Почему в компьютерах используются восьмеричная и шестнадцатеричная системы счисления?
- Как перевести целое число из десятичной системы в любую другую позиционную систему счисления?

Вопрос классу: как вы думаете, если компьютерный язык состоит из двух знаков 1 и 0, как записать с помощью только этих знаков, например, 16 номеров?

(учащиеся предлагают свои варианты решения проблемы)

Теоретический материал.

Двоичная система используется в компьютерной технике, так как:

- двоичные числа представляются в компьютере с помощью простых технических элементов с двумя устойчивыми состояниями;
- представление информации посредством только двух состояний надёжно и помехоустойчиво;
- двоичная арифметика наиболее проста;
- существует математический аппарат, обеспечивающий логические преобразования двоичных данных.

Двоичный код удобен для компьютера.

Человеку неудобно пользоваться длинными и однородными кодами. Специалисты заменяют двоичные коды на величины в восьмеричной или шестнадцатеричной системах счисления.

Восьмеричной системой счисления называется позиционная система счисления с основанием 8.

Алфавит: 0, 1, 2, 3, 4, 5, 6, 7.

$$a_{n-1}a_{n-2}...a_1a_0 = a_{n-1} \times 8^{n-1} + a_{n-2} \times 8^{n-2} + ... + a_0 \times 8^0$$

Пример: $1063_8 = 1 \times 8^3 + 0 \times 8^2 + 6 \times 8^1 + 3 \times 8^0 = 563_{10}$.

Восьмеричная система чаще всего используется в областях, связанных с цифровыми устройствами. Характеризуется лёгким переводом восьмеричных чисел в двоичные и обратно, путём замены восьмеричных чисел на триплеты двоичных. Ранее широко использовалась в программировании и вообще компьютерной документации, однако в настоящее время почти полностью вытеснена шестнадцатеричной.

Шестнадиатеричной системой счисления называется позиционная система счисления с основанием 16.

Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

$$a_{n-1}a_{n-2}...a_1a_0 = a_{n-1} \times 16^{n-1} + a_{n-2} \times 16^{n-2} + ... + a_0 \times 16^0$$

Пример: $3AF_{16} = 3 \times 16^2 + 10 \times 16^1 + 15 \times 16^0 = 768 + 160 + 15 = 943_{10}$.

Шестнадцатеричной система широко используется в низкоуровневом программировании и компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами.

Таблица записи чисел в позиционных системах счисления (заполняем таблицу совместно с классом)

Десятичная система	Двоичная система
1	1
2	10
3	11
4	100

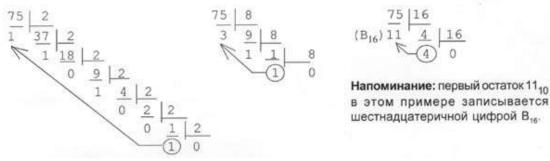
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111
16	10000
17	10001
18	10010

Как получить в любой позиционной СС число, идущее за данным (следующее)?

Для образования целого числа, следующего за любым данным целым числом, нужно продвинуть 1 самую правую цифру числа; если какая-либо цифра после продвижения стала нулем, то нужно продвинуть цифру, стоящую слева от неё.

Применяя правило, заполняем таблицу чисел в 10, 2, 8, 16-ой системах счисления до конца.

Десятична я система	Двоичная система	Восьмерич ная система	Шестнадца теричная система
1	1	1	1
2	10	2	2
3	11	3	3


⁻⁻⁻⁻

¹ заменить на следующую по старшинству цифру

4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
17	10001	21	11
18	10010	22	12

Как перевести число из 10-й СС в любую позиционную СС?

- 1) последовательно выполнять деление данного числа и получаемых целых частных на основание новой системы счисления до тех пор, пока не получим частное, равное нулю;
- 2) полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;
- 3) составить число в новой системе счисления, записывая его, начиная с последнего полученного остатка.

Задания:

	d) 1111 ₂ ;	e) 177 ₈ ;	f) 9AF9 ₁₆ ;			
	2. Какие целые числа предшествуют числам:					
	a) 1010 ₂ ;	b) 20 ₈ ;	c)20 ₁₆ ;			
	3. Переведите числа:					
	a) 35 ₁₀ ->? ₂ ;	b) 43 ₁₀ ->? ₈ ;	c)128 ₁₀ ->? ₁₆ ;			
	(даю время для самостоятельного выполнения заданий с применением новых знаний) Проверяем результаты, разбираем ошибки и сложные моменты. Ответы: 1.					
	a. 10 ₂ b d. 10000 ₂ e. 2.	$\begin{array}{cccc} 2_8 & \text{c. } 10_{16} \\ 200_8 & \text{f. } 9\text{AFA}_{16} \end{array}$				
	a. 1001 ₂ b. 3.					
	4. Сколько единиц в д 1) 1 2) 2 3) 10 4) 1 Решение (вариант 1, п переводим число 1025	рямой перевод): 5 в двоичную систему: 10				
) считаем единицы, их две) Ответ: 2					
	Возможные проблемы: легко запутаться при переводе больших чисел.					
1)	Решение (вариант 2, разложение на сумму степеней двойки): тут очень полезно знать наизусть таблицу степеней двойки, где $1024 = 2^{10}$ и $1 = 2^{0}$					
	2) таким образом, $1025 = 1024 + 1 = 2^{10} + 2^{0}$ 3) вспоминая, как переводится число из двоичной системы в (значение каждой цифры умножается на 2 в степени, равной е					

понимаем, что в двоичной записи числа ровно столько единиц, сколько в

Задачи для самостоятельной подготовки:

приведенной сумме различных степеней двойки, то есть, 2.

1. Какие целые числа следуют за числами:

a) 1_2 ;

b) 1₈;

c) F_{16} ;

1. Какие целые числа следуют за числами:

4) Ответ: 2

- a. 101₂;
- b. 7₈;
- c. $1F_{16}$;

- d. 111₂;
- e. 37_8 ;
- f. FF₁₆;

- g. 1111₂;
- h. 177₈;
- i. 9AF9₁₆;

- j. 101011₂;
- k. 7777₈;
- 1. CDEF₁₆
- 2. Какие целые числа предшествуют числам:
 - a. 1010_2 ;
- b. 20_8 ;
- c. 20₁₆;

- d. 1000₂;
- e. 100_8 ;
- f. 100₁₆;

- g. 10000₂;
- h. 110₈;
- i. A10₁₆;

- j. 10100_2 ;
- k. 1000₈;
- 1. 1000₁₆:
- 3. Сколько единиц в двоичной записи десятичного числа 519?

Литература и Интернет-ресурсы

- 1. Босова Л.Л., Босова А.Ю., Информатика и ИКТ 9 класс часть 1, М.:БИНОМ, Лаборатория знаний, 2013
- 2. Шауцукова Л.З., Информатика, 10-11. М.: "Просвещение", 2002 г.
- 3. Материалы для подготовки к ЕГЭ по информатике, сайт К. Полякова: http://kpolyakov.narod.ru/school/ege.htm
- 4. Свободная энциклопедия Wikipedia: https://ru.wikipedia.org